Abstract

AbstractThere has been growing interest in using sustainable and eco‐friendly products to produce engineering materials. For this purpose, composite material applications obtained from agricultural wastes are gaining popularity. This study examines the synergistic effect of rice husk and rice stalk wastes on the fade and recovery performance of brake friction composites. Brake friction materials were developed using rice husk and rice stalk separately and in two different weight percentages as a 5–10 ratio in the formulation. For comparison purposes, a reference brake pad using copper as a substitute and a commercially available brake pad were used. Various physical, mechanical and thermal properties were analyzed. The tribological behavior of friction composites was evaluated on the Krauss test device in line with the ECE R90 procedure. The worn surface properties were analyzed using scanning electron microscopy. Tribo test results of friction composites were taken as criteria for performance optimization. While the importance weight of the criteria was determined by AHP, the VIKOR method was used in the sorting of alternatives. The experimental results have revealed that rice husk‐added friction composites had a good coefficient of friction value with better fade and recovery performance compared to rice stalk‐added ones. Increasing the amount of rice husk and rice stalk in the formulation tended to decrease the fade performance; however, it has increased the wear rate and recovery properties. Optimization results have shown that the brake friction composite containing 5 wt % rice husk ranks first in meeting the desired tribological criteria.Highlights Cu‐free rice husk and rice stalk‐added friction composites were developed. Fibrous structure in the matrix developed the contact plateaus. Rice husk‐based tribo‐layer protected the composite from further wear damage. The addition of agro‐waste to friction composites exhibited good potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.