Abstract

A vertical dielectrically modulated tunnel field-effect transistor (V-DMTFET) as a label-free biosensor has been investigated in this paper for the first time and compared with lateral DMTFET (L-DMTFET) using underlap concept and gate work function engineering. To improve the performance of lateral biosensor (LB), a heavily doped front gate ${n}^{+}$ -pocket and gate-to-source overlap is introduced in the vertical biosensor (VB). The integrated effect of lateral tunneling as well as vertical tunneling in VB leads to enhanced ON-state current and decrease the subthreshold swing. To evaluate sensing ability of these devices, charged and charged neutral biomolecules are immobilized in nanogap cavity independently. A deep analysis has been performed to show the effect of variation in dielectric constant ( $k$ ), charge density ( $\rho $ ), ${x}$ -composition of Ge, % volume filling of ${t}_{\textsf {cavity}}$ , length and thickness of a ${n}^{+}$ -pocket and sensitivity of electrical parameters is also incorporated. Dual-pocket (front and back gate pocket) VB is studied and compared with the LB and VB in the tabular form. Noise characteristic of dielectrically modulated field-effect transistor, L-DMTFET, and V-DMTFET is also evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call