Abstract

Proton exchange membrane fuel cells are promising electrochemical energy conversion devices especially important for mobile technologies, including the automotive industry thanks to their quick start-up, low operation temperature, and relatively higher energy density characteristics. However, cell performance depends on many parameters like reactant temperature and humidification ratio, cell operating temperature, reactant feeding pressure, and flow field. In this study, the performance of a 50 cm 2 active area four-pass serpentine flow field hydrogen-air proton exchange membrane (PEM) fuel cell experimentally investigated for various cell operating temperatures and reactant back pressures without humidification on the cathode side. Dehydration or flooding condition of the cell is showed to be determined with tafel slope, limiting current density and types of voltage losses without using a special measurement. The results show that flooding, which is called mild flooding, is possible to be seen even at high cell temperature in a non-humidified cathode fuel cell, in case of exceeding operating pressures. Behavior of cell parameters under mild flooding and ongoing severe flooding are different from each other. Pressure increase at above 45 °C operating temperature is seen to served higher power output. However, at low back pressure with escalated operating temperature doesn't result with a substantial increase on performance since less amount of water is produced as a product of reaction causing membrane dehydration at relatively low current density levels thus increasing ohmic loss. • Mild flooding in the sub layers can be masked by the peak power increased with high operating pressure. • The point where increase of i L and i 0 with pressure turns to decrease is the flood threshold. • Nernst based performance gain gets more apparent above 45 °C operating temperature. • Composite membranes are more resistant to dehydration at temperatures above 80 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call