Abstract

A relative assessment on conventional and adaptive current controllers used in reduced sensor-maximum power point tracking (MPPT) based photovoltaic (PV)-grid tied inverter systems for the improvement of system power quality is suggested. The steady-state and transients errors produced in the conventional PI and proportional resonant controllers, which are used to generate the references, can be fixed by using an intelligent ADALINE-LMS adaptive controller; moreover, it helps in reducing the %THD (total harmonic distortion) level measured at different power zones. Also, to track the maximum PV power, which is further integrated to DC-bus, a reduced sensor-based technology is added into the circuit that sidesteps the problem of tracking local MPP instead of global MPP and the drawbacks of using current sensors. The use of a reduced sensor-based MPPT controller confirms extraction of maximum PV power and it guarantees a constant DC-link voltage under all the possible test conditions. The overall control architectures and system performances, which are tested under different system dynamics, are validated through MATLAB/Simulink as well as experimental findings obtained using the dSPACE RTI 1202 interfacing kit. These experimental results confirm that the adaptive control technique used in reduced sensor-MPPT based PV-grid tied inverter systems performs unbeatably with balanced load and grid voltages, less harmonics, quick response time etc. under the operation of linear, non-linear and transient loads, whereas, conventional controllers are best only for the linear loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.