Abstract

The combined solid oxide fuel cells and gas turbine (SOFC/GT) system is known to be a potential alternative for distributed power generation. In this paper, a novel SOFC/GT based cogeneration system, which integrated a transcritical carbon dioxide cycle (TRCC) with a LNG cold energy utilization system is proposed. A mathematical (zero-dimensional) model is developed to analyze the co-generation system performance from the perspective of thermodynamic (energy and exergy) and economic costs. The main parameters of the system are chosen to analyze their effects on thermodynamic performance. The results show that the current system can achieve 64.40% thermal efficiency and 62.13% exergy efficiency under given conditions, and can further improve efficiency through parameter optimization. Finally, the multi-objective optimization program using NSGA-II (Non-dominated Sorting Genetic Algorithm II) is used to obtain the optimal value of the system design parameters. In the multi-objective analysis, the thermodynamic efficiency and economic cost of the system are considered as objective functions. The optimization results show that the final optimized design selected from the Pareto front can achieve 63.08% thermal efficiency and 61.10% exergy efficiency, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call