Abstract

Ultra-high performance concrete (UHPC) as a novel concrete material is associated with very high strength and low permeability to aggressive environment. There have been many studies focusing on the development of UHPC materials. More studies are needed to implement the knowledge obtained from material level into the structural design and construction level. This paper emphasizes on the structural modeling and performance assessment of bridge girders made of UHPC considering the major improvements in terms of structural performance, durability, environmental impacts, and cost-effectiveness in a long-time interval. Additionally, the effect of the concrete strength increase on the life-cycle environmental impact and cost is assessed on a structural scale. An illustrative example is established to demonstrate the use of UHPC within precast-prestressed girder bridge. It is found that the use of UHPC can result in a significant reduction of concrete volume and CO2 emissions compared with conventional bridge with the same span length. Additionally, the life-cycle cost and equivalent annual cost associated with these two bridges are compared. This study aims to aid the development and adaptation of novel materials within civil engineering to make optimal use of the favorable material properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.