Abstract

This paper aims to provide a comprehensive performance assessment of a latticed tension-type transmission tower by performing both full-scale static tests and numerical simulations. In particular, a full-scale tension-type transmission tower was firstly constructed and tested for examining the performances under design loads and the ultimate capacity under an extreme wind load. The displacement and strain responses are investigated, and the failure process of the tension-type tower is presented. Numerical simulations are then performed in order to capture the failure process and estimate the bearing capacity of the experimental tower under the overload case. Moreover, Numerical simulations are also adopted to evaluate the influence of wind attack angles on the structural behavior of the tested tower. Experimental and numerical results demonstrate that this latticed tension-type transmission tower is designed with sufficient capacity to resist the design loads, and the buckling failures of the leg members at the bottom are the governing reason for the collapse of tower. In addition, the developed numerical model can accurately present the failure and structural response of the tension-type tower, and the influence of wind attack angles on the structural behavior is significant. This research is beneficial for improving the understanding on the bearing capacity and design of latticed tension-type transmission towers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.