Abstract

Outsourcing data on cloud storage services has already attracted great attention due to the prospect of rapid data growth and storing efficiencies for customers. The coding-based cloud storage approach can offer a more reliable and faster solution with less storage space in comparison with replication-based cloud storage. LT codes are the famous member of the rateless code family that can improve performance of storage systems utilizing good degree distributions. Since degree distribution plays a key role in LT codes performance, recently introduced Poisson robust soliton distribution (PRSD) and combined Poisson robust soliton distribution (CPRSD) motivate us to investigate LT code-based cloud storage system. So, we exploit LT codes with new degree distributions to provide lower average degree and higher decoding efficiency, specifically when receiving fewer encoding symbols, compared with popular degree distribution, robust soliton distribution (RSD). In this paper, we show that proposed cloud storage outperforms traditional ones in terms of storage space and robustness encountering unavailability of encoding symbols, due to compatible properties of PRSD and CPRSD with cloud storage essence. Furthermore, a modified decoding process is presented based on required encoding symbols behavior to reduce data retrieval time. Numerical results confirm improvement of cloud storage performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.