Abstract

Wastewater treatment plants are particularly challenging with the treatment and disposal of sewage sludge produced from the treatment units due to its high costs and environmental hazards. In this study, a biogas recirculation-driven anaerobic digestion (AD) system was developed with upward shear force being provided by biogas recirculation coupled with the alkali addition strategy, targeting biogas upgrading, sludge stabilization, and sludge flocculation simultaneously, thus reducing the sludge management costs. Compared to the conventional AD system, the novel biogas recirculation-driven AD system could achieve biogas upgrading with 10% higher CH4 content. Besides, the combination of NaOH and Ca(OH)2 addition strategy obviously improved sludge settleability and dewaterability compared to the single NaOH addition strategy. Owing to the attraction between negatively charged sludge particles and Ca2+ ions, the available Ca2+ in the former AD system may facilitate the re-flocculation and P immobilization in solid digestate, fix partial CO2 with less CO2 emission, and bridge with some sludge flocs. Moreover, 12.6% lower net cost for sludge management was achieved by this biogas recirculation-driven AD system together with the combination alkali addition strategy, which is regarded as a promising integrated multi-purpose system for sludge treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.