Abstract

The aim of this work is to present an extension of the closed-loop model-reference robust tuning (MoReRT) methodology to proportional integral and proportional integral derivative control algorithms enhanced with two input filters (set-point and feedback signal filters) for control of stable, integrating, inverse response, and unstable controlled processes. The method is based on the use of target models that include two design parameters (closed-loop dominant poles relative speed and damping). The control system performance/robustness trade-off is analyzed to reduce the design parameters to only one directly related with the control system robustness measured with the maximum sensitivity (MS). The proposed design methodology takes into consideration the control system load-disturbance rejection, set-point tracking, control effort smoothness, measurement of high frequency noise attenuation, and robustness to changes on the controlled process dynamics. The incorporation of these two input filters allows ta...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.