Abstract
This dataset reflects the parallel execution profiles of five Quantum ESPRESSO simulation (QE) versions in finding the total energy of the Cerium Oxide lattice using the self-consistent field (SCF) method. The data analysis used a strong scale setting to identify the optimal parameters and computing resources needed to complete a single SCF loop for one specific material efficiently. This analysis notably contributed to achieving the Best Performance Award at the 5th APAC HPC-AI Competition. The data comprises three sets. The first set features the parallel execution traces captured via the Extrae performance profiling tool, offering a broad view of the QE's model execution behaviour and how it used computational resources. The second set records how long QE's model ran on a single node at three HPC centres: ThaiSC TARA in Thailand, NSCC ASPIRE-1 in Singapore, and NCI Gadi in Australia. This set focuses on the impact of adjusting three parameters for K-point parallelisation. The final set presents benchmarking data generated by scaling out the QE's model across 32 nodes (1,536 CPU cores) on the NCI Gadi supercomputer. Despite its focus on a single material, the dataset serves as a roadmap for researchers to estimate required computational resources and understand scalability bottlenecks, offering general guidelines adaptable across different HPC systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.