Abstract

Embedded and high performance computing (HPC) systems face many common challenges. One of them is the synchronization of the memory accesses in shared data. Concurrent queues have been extensively studied in the HPC domain and they are used in a wide variety of HPC applications. In this work, we evaluate a set of concurrent queue implementations in an embedded platform, in terms of execution time and power consumption. Our results show that by taking advantage of the embedded platform specifications, we achieve up to 28.2 % lower execution time and 6.8 % less power dissipation in comparison with the conventional lock-based queue implementation. We show that HPC applications utilizing concurrent queues can be efficiently implemented in embedded systems and that synchronization algorithms from the HPC domain can lead to optimal resource utilization of embedded platforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call