Abstract

A moving-bed biofilm reactor (MBBR) containing immobilized Acinetobacter sp.CN86 was operated to investigate the simultaneous denitrification, bio-mineralization and cadmium removal performance. Effects of hydraulic residence time (HRT) (4 h, 6 h and 8 h), pH (6.0, 7.0 and 8.0) and influent Cd2+ concentrations (10 mg/L, 30 mg/L and 50 mg/L) were assessed on the simultaneous removal of nitrate, Cd2+ and Ca2+. Results indicate that the highest pollutant removal efficiency (98.33% (1.866 mg/L·h) for NO3−-N; 99.36% (1.242 mg/L·h) for Cd2+; 68.80% (15.480 mg/L·h) for Ca2+) was achieved under the conditions of a hydraulic residence time of 8 h, pH of 7.0 and initial Cd2+ concentration of 10 mg/L. Analyses of microbial distribution and community structures showed that Acinetobacter sp.CN86 was the main contributor (occupy 15.3% at the species level) to the effective removal of multiple pollutants in the MBBR. In addition, the main gas and precipitation components in the biofilm reactor were identified by gas chromatography, scanning electron microscope, and X-ray diffraction analyses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call