Abstract

A Fe–Cu bimetal catalyst (FCHS) was synthesized by depositing Fe3O4 on the shell of CuOx hollow spheres, which were prepared via a soft template method. Several characterization methods, including XRD, SEM-EDS&mapping, TEM, FTIR, and XPS, were used to reveal the morphology and surface properties of FCHS. The characterization results demonstrated that the double-shell hollow structure is formed with a dense coating of Fe3O4 nanoparticles on the surface of CuOx hollow spheres. FCHS can exhibit excellent catalytic activity to degrade sulfadiazine (SDZ) with the oxidant of persulfate (PS). The optimal SDZ removal performance was explored by adjusting reaction parameters, including catalyst dosage, oxidant dosage, and solution pH. The SDZ removal efficiency in the FCHS + PS system could reach 95% at the optimal reaction condition ([catalyst]0 = 0.2 g/L, [PS]0 = 2 mM, pH = 7.0) with 5 mg/L of SDZ. Meanwhile, the degradation efficiency decreased with the coexistence of phosphate or carbonate anions. According to the results of radicals scavenging experiments and the electron paramagnetic resonance analysis, the radicals of SO4·-, O2·- and ·OH generated in the FCHS + PS system contribute to the degradation of SDZ. Moreover, the results of XPS revealed that the solid-state charge-transfer redox couple of Fe(III)/Fe(II) and Cu(I)/Cu(II) can promote the activation of PS. It means that the cooperation effect between Cu oxides and Fe oxides in the double-shell structure is beneficial to the catalytic degradation of SDZ. Furthermore, four possible pathways for SDZ degradation were proposed according to the analysis of intermediate products detected by the LCMS-IT-TOF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call