Abstract
The adsorbent material humic acid-coated Fe3O4 nanoparticle-modified biochar from filamentous green algae was fabricated by introducing the composites of humic acid-coated Fe3O4 nanoparticles onto biochar from filamentous green algae using the co-precipitation method. Then, the removal of U(vi) from solution by humic acid-Fe3O4/BC was carried out through batch experiments. The results of the characterization showed that the reaction conditions had an important influence on U(vi) removal by humic acid-Fe3O4/BC. The pseudo-second-order kinetic model and Langmuir model better illustrate the adsorption process of U(vi) on the surface of humic acid-Fe3O4/BC. The adsorption processes were dominated by chemisorption and monolayer adsorption. The maximum adsorption capacity of U(vi) by humic acid-Fe3O4/BC could be calculated, and it could reach 555.56 mg g-1. The probable mechanisms of U(vi) removal by humic acid-Fe3O4/BC were reduction reaction, inner-sphere surface complexation and electrostatic adsorption. The high stability and reusability of humic acid-Fe3O4/BC made it more promising in U(vi) removal applications.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.