Abstract

Cr(VI) pollution has seriously affected the survival of biological organisms and humans, so reducing the harm of Cr(VI) pollution is a significant scientific goal. Natural starch exhibits a low adsorption capacity for Cr(VI); thus, physical or chemical modification is needed to improve the adsorption and regeneration performance of starch. In this study, a novel starch-based porous carbon (SPC) was prepared to remove Cr(VI) from water by using soluble starch as a raw material. The characterization results show that the SPC shows a ratio surface area of 1325.39 m2/g. Kinetics suggest that the adsorption of Cr(VI) on SPC is dominated by chemisorption. The isotherm data demonstrated that the adsorption of Cr(VI) by SPC adhered to the Freundlich model. SPC exhibits a multimolecular layer adsorption structure, and the highest amount of adsorbed Cr(VI) in SPC was 777.89 mg/g (25 °C). Ion competition experiments show that SPC exhibits significant selectivity for Cr(VI) adsorption. In addition, the adsorption cycle experiment shows that SPC maintains a 63 % removal rate after 7 cycles. In this study, starch was transformed into high-quality adsorbent materials by hydrothermal and activation strategies, offering a new innovation for the optimization of starch-based adsorbents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call