Abstract

Hierarchical vaterite spherulites, synthesized by a simple injection-precipitation method at room temperature, were applied for the simultaneous removal of heavy metal Cd(II) and dye Congo red (CR) from aqueous solution. Batch experiments reveal that the maximum removal capacities of as-prepared vaterite spherulites to Cd(II) and CR are 984.5 and 89.0 mg/g, respectively, showing excellent removal performance for Cd(II) and CR. Furthermore, in the binary Cd(II)-CR system, the removal capacity of vaterite to Cd(II) is significantly enhanced at lower CR concentration (<100 mg/L), but inhibited at higher CR concentration (>100 mg/L). In contrast, the concurrent Cd(II) shows negligible effect on the CR removal. The simultaneous removal mechanism was investigated by FESEM, EDX, XRD, FT-IR and XPS techniques. The simultaneous removal of Cd(II) and CR in the binary system is shown to be a multistep process, involving the preferential adsorption of dye CR, stabilization of CR to vaterite, coordination of the adsorbed CR molecules with Cd(II), and transformation of vaterite into otavite. Given the facile and green synthesis procedure, and effective removal of Cd(II) and CR in the binary system, the obtained vaterite spherulites have considerable practical interest in integrative treatment of wastewater contaminated by heavy metals and dyes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call