Abstract

The results of hover and wind tunnel tests of a reduced-scale, closely spaced, rigid, coaxial counterrotating rotor system are presented, along with results from a comprehensive analysis. The system features two-bladed upper and lower rotors, 2.03 m in diameter, with uniform section, untwisted rotor blades. Measurements include upper and lower rotor steady and vibratory hub loads, as well as control angles and control loads. Blade tip clearance was measured using an optical sensor. The rotor system was tested in hover and at advance ratios between 0.21 and 0.53, at collective pitches ranging from 2° to 10° achieving blade loadings in excess of 0.10. At each forward flight operating condition, sweeps of lift offset up to 20% were performed, while selected test conditions were repeated at different rotor speeds and interrotor index angles. Hover tests showed that aerodynamic interaction between upper and lower rotors decreased individual rotor performance compared to isolated rotors and induced a four-per-revolution vibratory load corresponding to the blade passage frequency. In forward flight, the rotor effective lift-to-drag ratio was found to increase with increasing advance ratio and lift offset, resulting in a 30% improvement at 20% lift offset and 0.5 advance ratio. The lower coaxial rotor was found to operate at higher lift-to-drag ratio than the upper rotor, in contrast to the behavior in hover. Lift offset resulted in a decrease in blade tip clearance with a corresponding increase in rotor side force. Vibratory loads increased with advance ratio, with the largest loads in the two- and four-per-revolution harmonics. Lift offset, in conjunction with interrotor index angle, is shown to modify vibratory forces and moments transmitted to the fixed frame, increasing some force components while decreasing others.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call