Abstract

Many animals frequently transition between different media while navigating their heterogeneous environments. These media vary in compliance, moisture content, and other characteristics that affect their physical properties. As a result, animals may need to alter their kinematics to adapt to potential changes in media while maintaining performance during predator escape and foraging. Due to its fluid nature, water is highly compliant, and although usually associated with swimming, water running has evolved in a variety of animals ranging from insects to mammals. While the best studied large water runners are the bipedal basilisk lizards (Basiliscus spp.), other lizards have also been observed to run across the surface of water, namely, Hemidactylus platyurus, a house gecko, and in this study, Anolis sagrei, the brown anole. Unlike the basilisk lizard, the primarily arboreal Anolis sagrei is not adapted for water running. Moreover, water running in A. sagrei, similar to that of the house gecko, was primarily quadrupedal. Here, we tested for performance and kinematic differences between aquatic and terrestrial running and if the variance in performance and kinematic variables differed between the two media. We found no difference in average and maximum velocity between running on land and water. We also found that Anolis sagrei had higher hindlimb stride frequencies, decreased duty factor, and shorter stride lengths on water, as well as more erect postures. Finally, we found that most kinematics did not differ in variance between the two media, but of those that were different, almost all were more variable during terrestrial running. Our findings show that animals may be capable of specialized modes of locomotion, even if they are not obviously adapted for them, and that they may do this by modulating their kinematics to facilitate locomotion through novel environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.