Abstract

The purpose of this study is to experimentally analyse the performance and the pollutant emissions of a four-stroke SI engine operating on ethanol–gasoline blends of 0%, 5%, 10%, 15% and 20% with the aid of artificial neural network (ANN). The properties of bioethanol were measured based on American Society for Testing and Materials (ASTM) standards. The experimental results revealed that using ethanol–gasoline blended fuels increased the power and torque output of the engine marginally. For ethanol blends it was found that the brake specific fuel consumption (bsfc) was decreased while the brake thermal efficiency ( η b.th.) and the volumetric efficiency ( η v ) were increased. The concentration of CO and HC emissions in the exhaust pipe were measured and found to be decreased when ethanol blends were introduced. This was due to the high oxygen percentage in the ethanol. In contrast, the concentration of CO 2 and NO x was found to be increased when ethanol is introduced. An ANN model was developed to predict a correlation between brake power, torque, brake specific fuel consumption, brake thermal efficiency, volumetric efficiency and emission components using different gasoline–ethanol blends and speeds as inputs data. About 70% of the total experimental data were used for training purposes, while the 30% were used for testing. A standard Back-Propagation algorithm for the engine was used in this model. A multi layer perception network (MLP) was used for nonlinear mapping between the input and the output parameters. It was observed that the ANN model can predict engine performance and exhaust emissions with correlation coefficient ( R) in the range of 0.97–1. Mean relative errors (MRE) values were in the range of 0.46–5.57%, while root mean square errors (RMSE) were found to be very low. This study demonstrates that ANN approach can be used to accurately predict the SI engine performance and emissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.