Abstract

Abstract This work presents an experimental study of an aqua-ammonia absorption system used for automobile air conditioning system, this system using the exhaust waste heat of an internal combustion diesel engine as energy source. The energy availability that can be used in the generator and the effect of the system on engine performance, exhaust emissions, auto air conditioning performance and fuel economy are evaluated. Because automotive air conditioning is one the most equipment that heavily uses CFC compounds and the leakage of CFCs from such air conditioners impact on the environment. The main purpose of this investigation to explore the feasibility of using waste energy to design the absorber and generation since these components are the most important components of absorption and they are directly influence the performance of the whole system. It has been found that the aqua -ammonia concentration effect the cooling capacity. The estimated cooling load for the automobile found to be within acceptable ranges which are about 1.37 ton refrigeration. The obtained results show that the coefficient of performance (COP) values directly proportional with increasing generator and evaporator temperatures but decrease with increasing condenser and absorber temperatures. Measured values for generator, absorber, and evaporator and condenser temperature were recorded and the coefficient of performance of the system varied between 0.85 and 1.04. The main components of the absorption cycle were designed and fabricated for optimal performance and could be rapidly transfer to the industry, The system was found to be applicable and ready to produce the required conditioning effect without any additional load to the engine. The proposed system decreases vehicle operating costs and environmental pollution caused by the heating system as well as causing a lower global warming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call