Abstract
This paper presents the implementation, performance, and energy consumption of accurate and mixed-precision linear algebra kernels, including inner-product (DOT), dense matrix–vector multiplication (GEMV), dense matrix multiplication (GEMM), and sparse matrix–vector multiplication (SpMV) for the compressed sparse row (CSR) format (CSRMV), on graphics processing units (GPUs). We employ a mixed-precision design in our implementation, which makes it possible to perform internal floating-point operations with at least 2-fold the precision of the input and output data precision: for binary32 data, the computation is performed on binary64, and for binary64 data, the computation is performed on 2-fold the precision with an accurate inner product algorithm referred to as Dot2. We developed highly optimized implementations which can achieve performance close to the upper bound performance. From our evaluation on Titan V, a Volta architecture GPU, we made the following observations: as the Dot2 operation consumes 11 times binary64 instructions, GEMM requires the corresponding overheads (in terms of both execution time and energy consumption), compared to the standard binary64 implementation. On the other hand, the accuracy of DOT, GEMV, and CSRMV is improved with a very small overhead to the execution time and up to roughly 30% overhead to the energy requirement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.