Abstract

This paper presents an experimental study investigating the effects of water-in-gasoline emulsion (WiGE) on the performance and emissions of a turbocharged PFI spark-ignition engine. The emulsions were produced through a micro-channels emulsifier, potentially capable to work inline, without addition of surfactants. Measurements were performed at a 3000 rpm speed and net Indicated Mean Effective Pressure (IMEP) of 16 bar: the engine point representative of commercial ECU map was chosen as reference. In this condition, the engine, fueled with gasoline, runs overfueled (λ = 0.9) to preserve the integrity of the turbocharger from excessive temperature, and the spark timing corresponds to the knock limit. Starting from the reference point, two different water contents in emulsion were tested, 10% and 20% by volume, respectively. For each selected emulsion, at λ = 0.9, the spark timing was advanced from the reference point value to the new knock limit, controlling the IMEP at a constant level. Further, the cooling effect of water evaporation in WiGE allowed it to work at stoichiometric condition, with evident benefits on the fuel economy. Main outcomes highlight fuel consumption improvements of about 7% under stoichiometric mixture and optimized spark timing, while avoiding an excessive increase in turbine thermal stress. Emulsions induce a slight worsening in the HC emissions, arising from the relative impact on combustion development. On the other hand, at stoichiometric condition, HC and CO emissions drop with a corresponding increase in NO.

Highlights

  • Water injection (WI) technology is seen as a promising solution to make turbocharged spark ignition (SI) engines operate with higher compression ratios, higher boost pressures and stoichiometric combustions at high loads

  • Starting from the above discussed state-of-the-art, this paper investigates the effects of water-in-gasoline emulsions on the performance and emissions of a turbocharged port fuel injection (PFI) spark-ignition engine

  • The effect of water-in-gasoline emulsion (WiGE) on the engine performance was investigated through the in-cylinder pressure analysis

Read more

Summary

Introduction

Water injection (WI) technology is seen as a promising solution to make turbocharged spark ignition (SI) engines operate with higher compression ratios, higher boost pressures and stoichiometric combustions at high loads.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.