Abstract

The present study was carried out to assess the possibility of using the HCNG in the commercially available CNG vehicles, as the available literature indicated the benefits of adding hydrogen to CNG in small percentages by volume, leading to improved combustion characteristics of CNG and yielding sizeable benefits, regarding improved engine performance and reduced engine emissions in automotive applications. In the present study, a commercially available CNG manifold carburation kit, commonly known as “sequential injection” in the market, is evaluated for its operation characteristics, on a Spark Ignited (SI), MPFI automotive engine, of a mass-produced passenger vehicle, converted for gas operation, using, gasoline, CNG, HCNG 10% and HCNG 18% as fuels. In the study, the following performance parameters, torque, power, thermal efficiency, brake specific energy consumption (BSEC), lambda, engine oil temperature, exhaust gas species were measured. After exhaustive engine testing, a comparison of engine performance emission characteristics for gasoline, CNG and HCNG 10% and HCNG 18% is presented. The engine performance using the optimized MAP tables demonstrated torque and power improvements for HCNG 10% and HCNG 18% in comparison to CNG. The torque benefits up-to 6% and power benefits up-to 4% were observed. The fuel energy consumption was measured to be reduced, and improvement in fuel conversion efficiency was also observed. Hydrogen substitution in CNG helped in reducing CO, HC, CO2 emissions for HCNG in comparison to CNG. Increase in NOx emission was observed for HCNG in comparison with CNG. Superior engine emission characteristics in comparison to gasoline and CNG is also demonstrated. The commercially available sequential gas manifold carburation was found to be suitable for HCNG 10% and HCNG 18%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call