Abstract

Fibrous membranes of poly(ɛ-caprolactone)/γ-poly(glutamicacid) (PCL/γ-PGA) composites were successfully produced via an electrospinning process. In doing so, the water solubility of florfenicol (FF) could be enhanced and the drug release properties of FF could be controlled. The mechanical, morphologic, and thermal properties of the fibrous membranes of PCL/γ-PGA were studied by using an electronic single fiber strength machine, scanning electron microscopy, and differential scanning calorimetry. The wettability of the fibrous membranes of PCL/γ-PGA was also measured as discussed in the subsequent section. Fourier transform infrared spectroscopy was applied in the structural analysis of the PCL/γ-PGA-FF fibrous membranes. The results indicated that FF was well blended in the composite membranes of PCL/γ-PGA. In vitro dissolution tests showed that PCL/γ-PGA (85/15; 8%) as both a biodegradable and biocompatible blend may improve the solubility of FF. Therefore, fibrous membranes of PCL/γ-PGA may represent ideal materials for the controlled drug release in various clinical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.