Abstract

A new frequency-modulated profile reflectometer system, featuring a monostatic antenna geometry (using one microwave antenna for both launch and receive), has been installed on the DIII-D tokamak, providing a first experimental test of this measurement approach for profile reflectometry. Significant features of the new system are briefly described in this paper, including the new monostatic arrangement, use of overmoded, broadband transmission waveguide, and dual-polarization combination/demultiplexing. Updated data processing and analysis, and in-service performance aspects of the new monostatic profile reflectometer system are also presented. By using a raytracing code (GENRAY) to determine the approximate trajectory of the probe beam, the electron density (ne) profile can be successfully reconstructed with L-mode plasmas vertically shifted by more than 10 cm off the vessel midplane. Specifically, it is demonstrated that the new system has a capability to measure ne profiles with plasma vertical offsets of up to ±17 cm. Examples are also presented of accurate, high time and spatial resolution density profile measurements made over a wide range of DIII-D conditions, e.g., the measured temporal evolution of the density profile across a L-H transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.