Abstract
Accelerating the training of Deep Neural Network (DNN) models is very important for successfully using deep learning techniques in fields like computer vision and speech recognition. Distributed frameworks help to speed up the training process for large DNN models and datasets. Plenty of works have been done to improve model accuracy and training efficiency, based on mathematical analysis of computations in the Con-volutional Neural Networks (CNN). However, to run distributed deep learning applications in the real world, users and developers need to consider the impacts of system resource distribution. In this work, we deploy a real distributed deep learning cluster with multiple virtual machines. We conduct an in-depth analysis to understand the impacts of system configurations, distribution typologies, and application parameters, on the latency and correctness of the distributed deep learning applications. We analyze the performance diversity under different model consistency and data parallelism by profiling run-time system utilization and tracking application activities. Based on our observations and analysis, we develop design guidelines for accelerating distributed deep-learning training on virtualized environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.