Abstract

Waste heat recovery (WHR) can represent a solution to improve the efficiency of ships’ propulsion, helping to exceed stringent greenhouse gas emission limits. This is particularly suitable in the case of propulsion based on gas turbines due to their medium-high temperature level of the exhaust gases. This study analyzes the performance of a hybrid energy grid, in which the heat is recovered by the exhaust gases of an aeroderivative gas turbine, a GE LM2500+, when the bottoming system is a supercritical CO2 gas turbine. Given the issues and peculiarities related to the onboard installation, where size and weight are fundamental concerns, six WHR schemes have been analyzed. They span from the simple cycle to partial preheated and regenerative, to a cascade layout in which an ORC system receives thermal power by the sCO2 GT. The influence of the seawater temperature on the performance of the hybrid energy system has been also considered. The energetic and exergetic performance comparison of the different schemes has been carried out by using the commercial software Thermoflex. The results showed that an increase in overall performance by up to 29% can be obtained and that the increase in seawater temperature can lead to a decrease in the overall performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call