Abstract

SummaryDue to the rapid development of satellite laser communication technology, free‐space optical (FSO) links present a promising alternative to traditional radio frequency (RF) links. In this paper, taking the influence of weather factors into consideration, we investigate the performance of the hybrid FSO/RF links where the feeder link operates in the FSO band and the user link operates in the hybrid FSO/RF band. Specifically, the FSO feeder link is modeled by the gamma–gamma distribution in the presence of beam wander and pointing error, and the detection method adopts either the intensity modulation with direct intensity (IM/DD) or heterodyne detection. The RF user link is assumed to follow the shadowed Rician model. In addition, in order to improve the transmission rate of the link under the time‐varying satellite–terrestrial channel, a rate adaptation scheme is proposed. The performance of the system under study is evaluated in terms of the outage probability, average bit error rate (BER), and average transmission rate. Our results provide some important insights, for example, (1) due to the constraints of the feeder link and weather factors, there is an upper limit on the outage performance and bit error rate of the hybrid link; (2) the adaptive transmission strategy can significantly improve the transmission rate of the link compared with traditional design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call