Abstract
super resolution concept has been introduced for image enhancement in various applications. Image enhancement is crucial operation essential for reducing different possible degradations of the captured image. More sophisticated techniques are already proposed. Wavelet transform based algorithms are widely used in many applications. Wavelet transform/s is used to extrapolate missing high frequency components which improve the efficiency of an algorithm. In this paper for super resolving the images, wavelet coefficients of the unknown high resolution image are learnt from a set of high resolution training images in wavelet domain. The performance of different discrete orthogonal and a biorthogonal wavelets have been evaluated on different class of images in terms of MSE and PSNR. The outcome of this work suggests that use of db4 wavelet transform is appropriate for super resolution technique. The PSNR obtained with this transform outfits for other wavelet transforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.