Abstract

Comprehensive performance analysis of the unordered V-BLAST algorithm with various power allocation strategies is presented, which makes use of analytical tools and resorts to Monte-Carlo simulations for validation purposes only. High-SNR approximations for the optimized average block and total error rates are given. The SNR gain of optimization is rigorously defined and studied using analytical tools, including lower and upper bounds, high and low SNR approximations. The gain is upper bounded by the number of transmitters, for any modulation format and any type of fading This upper bound is achieved at high SNR by the considered optimization strategies. While the average optimization is less complex than the instantaneous one, its performance is almost as good at high SNR. A measure of robustness of the optimized algorithm is introduced and evaluated, including compact closed-form approximations. The optimized algorithm is shown to be robust to perturbations in individual and total transmit powers. Based on the algorithm robustness, a pre-set power allocation is suggested as a low-complexity alternative to the other optimization strategies, which exhibits only a minor loss in performance over the practical SNR range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.