Abstract

Ultra-wide band (UWB) communication is one of the most promising technology for high data rate networks over short-range communication. The ultra-wide bandwidth offers pulses with very short duration that provides frequency diversity and multipath resolution. Ultra-wide band (UWB) channels raise new effects in the receiver, the amplitude fading statistics being different compared to the conventional narrow band wireless channels. This review paper focuses on modeling of ultra-wide band channels, especially for simulation of personal area networks and also discusses the benefits, application potential and technical challenges in wideband communication. The concept of Orthogonal Frequency Division Multiplexing (OFDM) has recently been applied in wireless communication systems due to its high data rate transmission capability with high bandwidth efficiency and its robustness to multi-path delay. UWB OFDM communication was proposed for physical layer in the IEEE 802.15.3a standard which covers wideband communication in wireless personal area networks. Since the channel model for multicarrier UWB communication is different from that of plain ultra-wide band channel, a novel modification method in UWB channel model is proposed with specific center frequency and multipath resolution. Moreover, dynamic channel estimation is necessary before demodulation of UWB OFDM signals since the radio channel is time varying and frequency selective for wideband systems. The performance of the proposed method is statistically analyzed using LS and MMSE based channel estimation methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call