Abstract

In this paper a novel analytical model for the saturation throughput of unslotted Carrier Sensing Multiple Access with Collision Avoidance (CSMA/CA) in wireless networks is proposed. A fixed point procedure is developed based on the interaction of the Physical layer (PHY) and the Medium Access Control sub-layer (MAC). The output of the Clear Channel Assessment (CCA), i.e. idle or busy medium in the neighborhood of a node, serves as a feedback mechanism for the dynamical scheduling rate controlled by the back-off procedure. The PHY is described by a renewal process between successful transmissions with failed attempts and collided packets in between. A semi-Markov process of the internal states of a node is used as a model for the MAC. An event-driven simulator for the non-beacon enabled IEEE Std 802.15.4™MAC is developed to verify the numerical results of the analytical method. A detailed analysis of the idle period after a transmission is carried out based on the proposed analytical approach. The probability that the CCA senses the channel idle depends clearly on the actual back-off stage and the first back-off expiration after a transmission cannot be modeled by a exponential distribution when a finite number of nodes are in contention. The output of the event-driven simulations confirms both statements in great detail and the saturated throughput evaluated with the analytical procedure is verified by event-driven simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call