Abstract

We analyze the performance of a recently introduced class of two-dimensional (2-D) multivariate parametric models for space-time adaptive processing (STAP) in airborne radars on the DARPA airborne side-looking radar model known as KASSPER Dataset 1. Investigation of the impact of linear uniform antenna array errors on techniques that exploit spatial smoothing is demonstrated using a complementary phenomenological clutter model developed at the AFRL. Signal-to-interference-plus-noise ratio (SINR) degradation with respect to the optimal clairvoyant receiver is studied for different parametric models, antenna errors, and training sample volumes. We also analyze the impact of KASSPER training data inhomogeneity on STAP performance. For an extremely small number of training-data samples, we demonstrate that a properly selected parametric model and an accompanying covariance matrix estimation technique should achieve efficient performance for practical STAP applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.