Abstract

For the two-branch space-time (ST) block-coded direct-sequence code-division multiple-access (DS-CDMA) systems, the impacts of a time-varying multipath channel on the downlink transmission are analyzed. By considering the systems using the random binary spreading code (RBSC) and deterministic binary spreading code (DBSC), the effects of the multipath interference and multiuser interference are included in the analyses of the bit-error rate and bit-error outage. Also, for the performance analysis of the system employing the decision-feedback (DF) detector, the effect of error propagation is taken into account. It is known that enlarging the spreading factor can enhance the interference-rejection ability of a DS-CDMA system and, hence, can improve the performance. However, it also lengthens the symbol duration and, thus, stiffens the diversity penalty resulting from the channel variation within an ST-code-word duration. Thus, a moderate spreading factor should be chosen. In this paper, for the RBSC system using the simple-maximum-likelihood (SML) detector, we derive an optimum spreading factor that is optimum in the minimum-error-probability sense. Numerical results have revealed that the derived optimum spreading factor is a good estimate of the ones for the DBSC systems using the SML, zero-forcing, and DF detectors. Therefore, it is very useful for system designers in determining the system parameters

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.