Abstract
A lot of neural network training algorithms on prediction exist and these algorithms are being used by researchers to solve evaluation, forecasting, clustering, function approximation etc. problems in traffic volume congestion. This study is aimed at analysing the performance of traffic congestion using some designated neural network training algorithms on traffic flow in some selected corridors within Akure, Ondo state, Nigeria. The selected corridors were Oba Adesida road, Oyemekun road and Oke Ijebu road all in Akure. The traffic flow data were collected manually with the help of field observers who monitored and record traffic movement along the corridors. To accomplish this, three common training algorithms were selected to train the traffic flow data. The data were trained using Bayesian Regularization (BR), Scaled Conjugate Gradient (SCG) and Levenberg-Marquardt (LM) training algorithms. The outputs/performances of these training functions were evaluated by using the Mean Square Error (MSE) and Coefficient of Regression (R) to find the best training algorithms. The results show that, the Bayesian regularization algorithm, performs better with MSE of 2.37e-13 and R of 0.9999 than SCG and LM algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering and Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.