Abstract

The AXSIS project (Attosecond X-ray Science: Imaging and Spectroscopy) aims to develop a THz-driven compact X-ray source for applications e.g. in chemistry and biology by using ultrafast coherent diffraction imaging and spectroscopy. The key components of AXSIS are the THz-driven electron gun and THz-driven dielectric loaded linear accelerator as well as an inverse Compton scattering scheme for the X-rays production.This paper is focused on the prototype of the THz-driven electron gun which is capable of accelerating electrons up to tens of keV. Such a gun was manufactured and tested at the test-stand at DESY. Due to variations in gun fabrication and generation of THz-fields the gun is not exactly operated at design parameters. Extended simulations have been performed to understand the experimentally observed performance of the gun. A detailed comparison between simulations and experimental measurements is presented in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.