Abstract
The evacuated tube collector (ETC) has gained extensive use in low-temperature applications due to its cheapness and high efficiency. The ETC can be used with a concentrator for medium temperature applications, in the range of 140–200 °C. However, the heat extraction rate of the absorber tube is a limitation factor, particularly at higher heat flux and high flow rates. The energy gained is not directly proportional to the concentration factor used. This work thus proposes a counter-flow copper absorber for increasing the heat extraction rate and compares its performance to the conventional direct-flow absorber. The designs are both optimized by varying the absorber diameters, and a material property analysis is done. COMSOL Multiphysics is used for the simulations. The performance of the 2 systems is evaluated using a conjugate heat transfer model at flow rate ranges of 0.02–0.2 kg/s and uniform theoretical heat flux of 1000, 2000, and 3000 W/m2. Analysis of the results indicates that the counter-flow with 0.01 and 0.02 m inner and outer diameter respectively has 4 times more energy gain than the direct-flow with a 0.01 m diameter. Increasing the heat flux by 2 at 0.02 and 0.2 kg/s flow rate increases the temperature by 1.5 and 1.1 for the counter-flow absorber and 1.2 and 1.04 for the direct-flow absorber. Tripling the heat flux at the same flow rate range increases the temperature by 2 and 1.4 for the counter-flow absorber and 1.5 and 1.07 for the direct-flow absorber. The counter-flow absorber is thus the best choice at higher heat flux and high flow rates which are typically required for industrial heating.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.