Abstract

This paper aims to describe the analysis of the performance of an electro-optical space-based sensor for space surveillance purposes and space debris detection in the geostationary (GEO) ring. Such sensor is considered to be operating on a dawn–dusk Sun-synchronous, circular low Earth orbit at an altitude of 630 Km, while its optical characteristics have been taken from those of the Space-Based Visible (SBV) sensor. Two main simulations have been carried out through the use of the MATLAB software. The first simulation deals with the detection capability of the sensor, which is discussed in terms of detectable visual magnitude when the target of the observation is a diffuse sphere orbiting in the geostationary (GEO) orbit; its minimum detectable size is then determined. In addition, the relative geometry between the Sun, the sensor and the target has also been studied along with the configurations which can limit the visibility of the sensor over the target. The second simulation has been used to evaluate the performance of the sensor in terms of number of detectable GEO targets and duration of the observation when a certain pointing strategy is adopted. In such strategy, two SBV-like sensors are placed on the same orbit, thus creating a constellation in which each sensor points towards a fixed location in the inertial space. These locations have been chosen to be the geosynchronous pinch points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.