Abstract

By converting broadband sunlight into narrowband thermal radiation matched to the bandgap of thermophotovoltaic (TPV) cells, solar thermophotovoltaic (STPV) systems could potentially reach a high conversion efficiency far exceeding the Shockley–Queisser limit. However, actual STPV systems exhibit much lower efficiency due to non-idealities in solar absorbers, thermal emitters and TPV cells. In this work, the STPV system with selective metamaterial solar absorber and emitter is investigated, whose conversion efficiency is between 8% and 10% with concentration factor varying between 20 and 200. This conversion efficiency is remarkably enhanced compared with the conversion efficiency of less than 2.5% for the STPV system employing black absorbers and emitters. The sidewall emission losses from the absorber–emitter module and the non-unity view factor between the thermal emitter and TPV cell will diminish the performance of the STPV system, whose effects are also quantitatively discussed in this work. Furthermore, the non-planar STPV systems with larger emitter–absorber area ratios are investigated, whose conversion efficiency can reach up to 12.6% under 200 suns when the emitter is four times as large as the absorber.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call