Abstract

Current study deals with performance evaluation of the solar power tower driven recompression with main compressor intercooling (RMCIC) supercritical CO2 cycle incorporating the parallel double evaporator organic Rankine cycle (PDORC) as bottoming cycle using low global warming potential fluids to reduce the global warming and ozone depletion. Using the PDORC instead of the basic organic Rankine cycle, waste heat from the intercooler and cycle exhaust were recovered simultaneously to enhance performance of the standalone RMCIC cycle. Exergy, thermal efficiency, efficiency improvement and waste recovery ratio were considered as performance parameters. A computer program was made in engineering equation solver to simulate the model. It was concluded that by the incorporation of the PDORC thermal efficiency was improved by 7–8% at reference conditions. Maximum combined cycle's thermal and exergy efficiency were found 54.42% and 80.39% respectively of 0.95 kW/m2 of solar irradiation based on R1243zf working fluid. Among the results it was also found that maximum waste heat was recovered by the R1243zf about 54.22 % at 0.95 effectiveness of low temperature recuperator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.