Abstract
In this paper we study slotted ALOHA random access optical code division multiple access packet-switching networks with a chip-level receiver structure. We use generalized optical orthogonal codes (GOOCs) and the overlapping pulse position modulation (OPPM) signaling technique to improve system performance. The impact of physical layer parameters such as the GOOC cross-correlation value and the OPPM overlapping index on key performance benchmarks such as network throughput and delay are analyzed. We also study the stability of the network based on the number of backlogged users, using the expected state drift. It has been shown that using GOOC instead of strict optical orthogonal codes improves the network average delay and throughput. Moreover, by comparing M-ary OPPM and conventional OOK signaling with a fair criterion we have demonstrated that OPPM signaling can substantially improve both steady state and transient network characteristics. This improvement can be obtained without introducing additional complexity in the receiver and transmitter structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.