Abstract

The shrinkage linear complex-valued least mean squares (SL-CLMS) algorithm with a variable step size overcomes the conflicting issue between fast convergence and low steady-state misalignment. To the best of our knowledge, the theoretical performance analysis of the SL-CLMS algorithm has not been presented yet. This letter focuses on the theoretical analysis of the excess mean square error transient and steady-state performance of the SL-CLMS algorithm. Simulation results obtained for identification scenarios show a good match with the analytical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.