Abstract

In addition to the use of waste heat from the vessel’s exhaust gas to save energy onboard, reduce the carbon emissions of the ship, and combine the characteristics of ship waste heat, mathematical modeling and testing of ship waste heat temperature difference power generation were carried out in this study. Finally, an experimental platform for temperature differential power generation was established to assess the impact of influencing agents on the efficiency of temperature differential power generation. The results show that the effect of different thermally conductive greases on the efficiency of temperature differential power generation tablets is basically the same. In addition, the rate of flow of cooling water, the cooling plate area, and the heat source temperature have more significant effects on the open-circuit voltage and maximum output power. The results show that the maximum power output growth rate increases with increasing cooling water flow, reaching 8.26% at 4 L/min. Likewise, increasing the heat source temperature enhances the maximum output power growth rate by 15.25% at 220 °C. Conversely, the maximum output power of the temperature difference power generation device decreases as the cooling plate area increases, and the maximum output power reduction rate is 15.25% when the cooling plate area is 80 × 200 mm2 compared to the case of using a cooling plate area of 80 × 80 mm2. Moreover, the maximum output power of the temperature differential power generation device reaches 13.6 W under optimal conditions. Assuming that the temperature difference power generation plate is evenly distributed on the tailpipe of the 6260ZCD marine booster diesel engine, it could save approximately 5.44 kW·h electric power per hour and achieve a reduction in CO2 emissions of 0.3435 kg per hour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.