Abstract
PurposeA computational fluid dynamics based parametric analysis for shell and helical tube heat exchanger (SHTHE) using CuO/water and Al2O3/water nanofluids is the main purpose of the present work. The parameters having impact on the performance of a heat exchanger have been studied in depth. As the solid nanoparticle shows higher thermal conductivity compared to liquid particles, inclusion of this nanoparticle into the base fluid significantly enhances the thermal conductivity of the liquid. Incorporation of nanofluid in the heat exchanger can increase its performance.Design/methodology/approachThe simulation is performed in Solid-Works flow simulation, and the performance of SHTHE is observed by varying the pitch of helical tube from 0.013 to 0.018 m and coil diameter from 0.0813 to 0.116 m, keeping the other parameters constant. The tube side and shell side flow rate is kept as 2 LPM.FindingsThe results indicate that the effectiveness of the heat exchanger increases with the increase of pitch and coil diameter. The maximum effectiveness of 0.5022 for CuO/water and 0.4928 for Al2O3/water nanofluid is observed at a pitch of 0.018 m and the coil diameter of 0.116 m.Originality/valueIt is observed that CuO/water nanofluid shows better performance compared with Al2O3/water nanofluid. For a coil diameter of 0.116 m and pitch of 0.018 m, the SHTHE with CuO/water nanofluid shows 1.82% greater effectiveness compared to the effectiveness with Al2O3/water nanofluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.