Abstract
Wireless energy transfer cooperative communication systems are analyzed in this paper. In these systems, a source node can communicate with a destination node directly or via the selected relay nodes, while relay nodes harvest energy from radio frequency for forwarding the received signal. In addition, the decode and forward (DF) protocol is applied to relay nodes, and selection combination technique is employed at the destination in order to select the best relay node. The system performance is presented by outage probability expressions over independent and identically distributed (i.i.d) Nakagami-m channel model. The theoretical analysis and the closed-form expression of outage probability are derived and compared with Monte-Carlo simulations. The simulation results are similar to the theoretical analysis results, it verifies our proposed derivation method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.