Abstract
In this work, a procedure is presented for performance analysis intended to evaluate the resilience and H 2 norm bound of discrete-time systems controlled by full-order dynamic feedback compensators. Acceptable performance is specified by disks in the complex plane within which the eigenvalues of the controller and the observer remain in the presence of perturbations in the controller and observer gains. Maximum gain perturbation bounds can be obtained based on the designer's choices of controller and observer eigenvalue regions and the resulting H 2 -norm bound is calculated. The linear matrix inequality technique is used throughout the analysis process. Illustrative examples are included to demonstrate the effectiveness of the proposed methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.