Abstract

Fluorescence microscopy imaging is widely used in biomedical research, astronomical speckle imaging, remote sensing, positron-emission tomography, and many other applications. In companion papers P. Sarder and A. Nchorai, we developed a maximum likelihood (ML)-based image deconvolution technique to quantify fluorescence signals from a three-dimensional (3D) image of a target captured microparticle ensemble. We assumed both the additive Gaussian and Poisson statistics for the noise. Imaging is performed by using a confocal fluorescence microscope system. Potential application of microarray technology includes security, environmental monitoring, analyzing assays for DNA or protein targets, functional genomics, and drug development. We proposed a new parametric model of the fluorescence microscope 3D point-spread function (PSF) in terms of basis functions. In this paper, we present a performance analysis of the ML-based deconvolution techniques (P. Sarder and A. Nchorai) for both the noise models

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.