Abstract
Recent advancement in internet of medical things has enabled deployment of miniaturized, intelligent, and low-power medical devices in, on, or around a human body for unobtrusive and remote health monitoring. The IEEE 802.15.6 standard facilitates such monitoring by enabling low-power and reliable wireless communication between the medical devices. The IEEE 802.15.6 standard employs a carrier sense multiple access with collision avoidance protocol for resource allocation. It utilizes a priority-based backoff procedure by adjusting the contention window bounds of devices according to user requirements. As the performance of this protocol is considerably affected when the number of devices increases, we propose an accurate analytical model to estimate the saturation throughput, mean energy consumption, and mean delay over the number of devices. We assume an error-prone channel with saturated traffic conditions. We determine the optimal performance bounds for a fixed number of devices in different priority classes with different values of bit error ratio. We conclude that high-priority devices obtain quick and reliable access to the error-prone channel compared to low-priority devices. The proposed model is validated through extensive simulations. The performance bounds obtained in our analysis can be used to understand the tradeoffs between different priority levels and network performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.