Abstract
Electric vehicle technology becomes increasingly important as it takes care of the environmental issues related to ICE vehicle and reduces the dependency on fossil fuels. Electric vehicle being greatly dependent on the limited electrical energy provided by a battery, the power flow efficiency is very important in this context. Electric vehicle integration to the distribution grid is increased at a faster rate because it can act as power backup to the grid/local loads reducing the peak load and filling the valley point. Most of software engineers own an Electric Vehicle based on eco-friendly principles. The Batteries in the car are connected to the charging point (or) grid monitoring of State of Charging (SOC) facilities in the parking area of company. When the Renewable power (solar energy) is available, the batteries will be charged to hundred percentage of SOC. Then excess power from PV will connect to load as well as grid. When the electrical power supply cutoff the car batteries will act as a battery bank of UPS and support to the critical load with condition based Allowable SOC. The total capacity of the batteries depends upon the no of cars available at a particular shift in a day. This work proposes the power backup of EV is utilized as an UPS to Software Company as well as used to support the Dynamic Voltage Restorer (DVR) to mitigate the fault occurring in the distribution system. Additionally, the EV supported DVR compensates voltage harmonics, voltage sag-swell, voltage interruptions coming from distribution to enhance power-quality of entire EV system without any additional compensation devices. The entire system is modeled using MATLAB/SIMULINK and the results confer the feasibility of the proposed objective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering (IJRTE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.